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Chaos synchronization in gap-junction-coupled neurons
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Depending on temperature, the modified Hodgkin-Huxley (MHH) equations exhibit a variety of dynamical
behaviors, including intrinsic chaotic firing. We analyze synchronization in a large ensemble of MHH neurons
that are interconnected with gap junctions. By evaluating tangential Lyapunov exponents we clarify whether
the synchronous state of neurons is chaotic or periodic. Then, we evaluate transversal Lyapunov exponents to
elucidate if this synchronous state is stable against infinitesimal perturbations. Our analysis elucidates that with

weak gap junctions, the stability of the synchronization of MHH neurons shows rather complicated changes
with temperature. We, however, find that with strong gap junctions, the synchronous state is stable over the
wide range of temperature irrespective of whether synchronous state is chaotic or periodic. It turns out that
strong gap junctions realize the robust synchronization mechanism, which well explains synchronization in

interneurons in the real nervous system.
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In the rat hippocampus, interneurons show the high
frequency synchronization during the gamma oscillation
(~40 Hz) and sharp wave burst (~200 Hz) [1], and such
simple synchronization of a large ensemble of neurons has
attracted much attention of theoretical researchers [2—-10].
One major analysis for these studies is the phase reduction
method [9-11], in which phase variables are utilized to rep-
resent the periodic behavior of neurons. The phase reduction
method is, however, applicable only to the case of infinitesi-
mal interactions. Moreover, if neurons behave aperiodic,
phase variables are indefinable. The general synchronization
properties of strongly coupled neurons thus remained un-
clear, especially in the case of chaotic neurons.

Meanwhile, studies of synchronization of a large en-
semble of chaotic oscillators have made a remarkable
progress in recent years [12—-15]. The major targets of these
studies are simple chaotic oscillators such as Lorenz equa-
tions and logistic maps. The synchronous state of these os-
cillators is characterized by two types of Lyapunov expo-
nents: tangential Lyapunov exponents and transversal
Lyapunov exponents. While tangential Lyapunov exponents
clarify whether synchronous state is chaotic or periodic,
transversal Lyapunov exponents elucidate if synchronous
state is stable against infinitesimal perturbations. In the
present paper, we employ these sophisticated techniques in
chaos synchronization theory to investigate synchronization
of neurons. We show that tangential and transversal
Lyapunov exponents enable us to analyze stability of syn-
chronization in a large ensemble of neurons for arbitrary
neuron dynamics and arbitrary strength of interactions.

The concrete target of the present analysis is a network of
N(=2) spiking neurons that obey the modified Hodgkin-
Huxley (MHH) equations [16,17]. The MHH equations are
four-dimensional nonlinear differential equations, which in-
clude temperature-dependent scaling factors p:A(lT_TO)”0 and
¢=A(2T_T°)/10. (See Ref. [17].) With T changing, a MHH neu-
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ron shows a variety of dynamical behavior including chaotic
firing as shown in Fig. 1(a) [interspike intervals (ISI) and so
on will be explained later]. For the sake of simplicity, we
denote this MHH neuron dynamics by dx/dt=F(x) with neu-
ron state vector x=(v,wy,...,w,_;)!, where v represents the
membrane potential and {w,} describes the gating of ion
channels. We assume that N neurons {x;} are interconnected
with all-to-all gap junctions. Since gap junctions induce elec-
tric currents proportional to potential difference between
neurons, the dynamics of the neural networks is expressed as

dx;
i _F(x,) + (.0, ...,0)7,

i=1,....N 1
5 i (1)

with
8 8
Ii=]§§ (Uj—Ui)=N§ (le_xil)’ ()

where constant ¢=1.0 uF/cm? is capacitance of the mem-
brane and /; is the electric current induced by gap junctions.
The above dynamics can be generalized to the form

dx;
?’; —F(x,)+ 1%; G(x,X,). (3)

Therefore, we investigate synchronous state in this general
mean-field dynamics. We assume a stationary synchronous

state x| = =x,=x", which obeys
dX* s % %
E:F(x)+gG(x X ). (4)

To elucidate the stability of this synchronous state we
investigate the perturbed state x;=x +0Jx;, We define
Jacobi matrices such that F(x*+8x)=F(x")+F'(x")
+ (higher order) and G(x"+ %, X + %)) =G(x",x")
+G{(x",x") 8, +Gj(x",x") 8x,+ (higher order). Then, Taylor
series expansion to the first order yields
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FIG. 1. (a) The interspike intervals (ISIs) in stationary state of an isolated single MHH neuron are plotted as a function of temperature
T. The ISI distribution of synchronous state of N neurons x" is the same as a isolated single neuron since the interaction term in Eq. (4)
vanishes in the present system. (b) The largest tangential Lyapunov exponent )\‘{, which characterizes synchronous state x* described in (a),
is plotted. In the present system, )\‘l is independent of g. (c) The largest transversal Lyapunov exponent )\1L is plotted for g=0.02 mS/cm?.
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When )\IL takes a negative value, synchronization stable. The sampling points are 7=5+0.025Xk°C
(k=0,1,2,...).
d(6x;) odic (chaotic), the largest tangential Lyapunov exponent )\‘{

* Pk Pk % 1
7 =[F'(x) + gG{(x,x)]5; + gG5(x ,x )Xlz oX;.
J

)

The naive evaluation of this N-body dynamics brings about
an eigenvalue problem with the large size of matrix. We
hence define the mean state X=(1/N)Z;x; and obtain the dy-
namics of its deviation 8x=(1/N)Z;dx; in the closed form

d(5X)
dt

=[F'(x) +gG{(x",x) +gG(x ", x)]&%.  (6)

For this n-dimensional linear dynamics, we can define the
spectrum of n Lyapunov exponents {)\9}1:1,.4.,11- These expo-
nents are the so-called tangential Lyapunov exponents. To
the first order, Egs. (4) and (6) are equivalent to

E(X +&X)=F(x +&X)+gGx +&X,x +&). (7)

Solving Egs. (4) and (7) numerically we can calculate the
time evolution of a sufficiently small deviation &X. Evaluat-
ing this time evolution of 6x by the well-known computa-
tional method for Lyapunov exponents [18], we can calculate
{x!} numerically. Note that in this calculation of {)\y} we do
not have to solve the huge N-body dynamics in Eq. (3). Since
replacement of x* in Eq. (4) by x"+ &% gives the same dy-
namics as Eq. (7), {)\? indicate the characteristics of syn-
chronous state x”, that is, when synchronous state x" is peri-

takes the zero value (a positive value).

We have evaluated the mean state X by tangential
Lyapunov exponents {\}}. We now investigate deviations
around the mean state: x;=X+ &X;. Subtracting Eq. (6) from
Eq. (5) we obtain the dynamics of &%; in the closed form

W ) sl Ol @
When synchronization is stable, all deviations {&X;} must
converge to {0}. Since these N dynamics of deviations are
completely identical, it suffices to evaluate only one dynam-
ics among them. For n-dimensional linear dynamics in Eq.
(8) we can define the spectrum of n Lyapunov exponents
{\/}21.. .- These exponents are the so-called transversal
Lyapunov exponents. The largest transversal Lyapunov ex-
ponent )\f takes a negative value when the synchronous state
is stable in the sense of Milnor [14,19]. To the first order,
Egs. (4) and (8) are equivalent to

d . , « .
Zt(x + &) =F(x + &;) + gG(x + &X,;,x ). 9)

Applying the computational method for Lyapunov exponents
[18] to Eqgs. (4) and (9), we can calculate {\;'} numerically.

Let us apply the above analysis to investigating synchro-
nization in networks of MHH neurons defined by Egs. (1)
and (2). First, we calculate synchronous state x* in Eq. (4).
Note that in the present system the interaction term
¢G(x",x") in Eq. (4) vanishes because of Eq. (2). Therefore,
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the behavior of x” in Eq. (4) is completely the same as that of
an isolated single MHH neuron. For the rough illustration of
a single MHH neuron behavior, we define the kth spike tim-
ing 7(k) by the time when membrane potential v*:){lk Crosses
the threshold value 6=—20 mV from below, and then calcu-
late interspike intervals (ISIs) #(k+1)—t(k) (k=1,2,...) in
Fig. 1(a). Below T=6.8 °C, ISIs take the single value around
650 msec, implying the simple periodic firing in which only
one spike arises during the period. At T=6.8 °C, however,
period doubling bifurcation occurs so that the neuron fires
twice during the period. After that, following typical period
doubling cascade, the MHH neuron dynamics reaches the
chaotic regime beyond 7=7.3 °C, where ISI distribution be-
comes blurred. In this chaotic regime, we, however, observe
several periodic windows, in which the behavior of neuron
becomes periodic abruptly.

Second, from Egs. (4) and (7), we calculate the tangential
Lyapunov exponents {)\9} for the exact characterization of
synchronous state x" illustrated in Fig. 1(a). In the present
system, {)\ﬁ} are independent of g because of the interaction
in Eq. (2). In Fig. 1(b), we plot the largest tangential
Lyapunov exponents )\‘{ as a function of temperature 7.
When synchronous state X~ in Fig. 1(a) is periodic, )\q takes
the zero value. In the chaotic regime beyond 7=7.3 °C, )\‘l
takes a positive value, though we observe the several valleys
of )\'{ corresponding to the periodic windows observed in Fig.
1(a).

Third, we calculate the transversal Lyapunov exponents
{\/'} from Egs. (4) and (9). {\;'} depend on parameter g. In
Fig. 1(c) we calculate the largest transversal Lyapunov expo-
nent )\,l as a function of temperature T for g=0.02 mS/cm?.
When )\f takes a negative value, synchronization of MHH
neurons can occur.

When we assume weak gap junctions as in Fig. 1
(g=0.02 mS/cm?), the condition for synchronization of
MHH neurons is rather complicated. The periodic synchro-
nous state is stable in some conditions and unstable in other
conditions. We also see the stable chaotic synchronous state
in some values of temperature 7. Around 7~ 12 °C we find
an unstable periodic synchronous state inside the periodic
window (\}=0 and 0<\{ at T=11.9 °C) while we find
stable chaotic synchronous state outside the periodic window
(0<\| and \{ <0 at T=12.1 °C). Actually, the numerical
simulations of 100 MHH neurons in Fig. 2 show the good
agreement with the results of our analysis. Around
T~9.5 °C, however, synchronous state is stable both inside
and outside the periodic window. With weak gap junctions
the condition for synchronization is so complicated that its
intuitive explanation is difficult.

On the other hand, with strong gap junctions, synchroni-
zation of MHH neurons is stable over the wide range of
temperature 7. In Fig. 3, we plot the largest transversal
Lyapunov exponent )\f as a function of g for various values
of temperature 7. Equations (6) and (8) show that when pa-
rameter g takes the zero value, transversal Lyapunov expo-
nents {)J} take the same value as tangential Lyapunov expo-
nents {)\f} Therefore, the synchronous state in Fig. 3 is
periodic for 7=6.5, 7, and 11.9 °C, and chaotic for 7=7.5,
11, and 12.1 °C. In these six temperatures, the behavior of
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FIG. 2. The results of numerical simulations of 100 MHH neu-
rons with g=0.02 mS/cm? are plotted for (a) T=11.9 °C and (b)
T=12.1 °C. Each dot represents spike timing in stationary state
realized after r=1.0 X 107 msec.

MHH neurons are quite different from one another. However,
all )\1L take negative values if we increase the strength of gap
junctions beyond g=0.05. In all the temperature we investi-
gate (5 °C<T<15 °C), we find the critical value of g be-
yond which )\1l always takes a negative value. Irrespective of
whether synchronous state is chaotic or periodic, strong gap
junctions induce synchronization of neurons.

In summary, we have studied the synchronous state of a
large ensemble of modified Hodgkin-Huxley (MHH) neurons
assuming gap junctions among neurons. For the general
mean-field dynamics in Eq. (3), we have evaluated
N X n-dimensional deviation to define tangential Lyapunov
exponents {\}} and transversal Lyapunov exponents {\;'}. In
Fig. 1(b), we have investigated characteristics of the syn-
chronous state of MHH neurons by the largest tangential
Lyapunov exponent \|. In Fig. 1(c), we have elucidated the
stability of this synchronization by the largest transversal
Lyapunov exponent )\IL. With weak gap junctions g
=0.02 mS/cm?, stability of synchronization of MHH neu-
rons shows rather complicated change with temperature as
shown in Fig. 1(c). However, in Fig. 3 and so on, we have
found that with strong gap junctions, synchronous state is
stable over the wide range of temperature. The strong gap
junctions induce synchronization both in periodic and cha-
otic neurons, and that implies a pivotal role of gap junctions
in synchronization of the large number of neurons

It should be emphasized that the computational cost for
Lyapunov exponents of four-dimensional MHH equations is
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FIG. 3. The largest transversal Lyapunov exponent )\f‘ is plotted
as a function of g for various values of temperature 7. The numbers
in the figure indicate temperature 7.
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not much higher than that of the three-dimensional Lorenz
equations. Even when we assume dozens of ion channels in
neuron dynamics, we would be able to calculate both
Lyapunov exponents within the acceptable computation time.
When the synchronous state is periodic and interactions are
infinitesimal (g<<1), one can use the phase reduction
method. In the present system of MHH neurons, however,
)\1l in Fig. 3 fluctuates dramatically as g increases, even if the
synchronous state is periodic. Since the synchronization
property with finite g is quite different from that with infini-
tesimal g, calculation of transversal Lyapunov exponents is
indispensable in investigating the present system. In the
real nervous system many types of neurons are intercon-
nected with chemical synapses. Some authors model the dy-
namics of chemical synapse in the manner as I;=(g/N)
X2 (v, ~v;)s;, Where constant v,,, denotes reversal poten-
tial and s; obeys the dynamics ds;/dt=aF(v;)(1-s;)-Bs;
with the sigmoidal function F(v)=1/{1+exp[-(v—-6,,,)/2]}
[2,5,22]. In this case, the synchronous state X~ depends on g
since G(x",x") does not vanish. Moreover, Jacobi matrices
of G(x;,x;) are not constant but depend on x; and x;. Our
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analysis is applicable also to such complicated neural net-
works since their dynamics are written in the form of Eq. (3).
Although pulse-coupled neural networks based on the
threshold-crossing spike timing cannot be written in the form
of Eq. (3), we can employ the similar analysis by carrying
out the decomposition of linear stability discussed in our
previous study [8]. In that study, we have evaluated two
types of Floquet matrices to show that periodic synchronous
state of integrated-and-fire (IF) neurons are stable with only
inhibitory chemical synapses. Interestingly, in the real ner-
vous system, interneurons are found to be connected with
inhibitory chemical synapses and gap junctions [20]. It turns
out that networks of interneurons take the extremely ideal
structure to induce synchronization of an ensemble of neu-
rons. The present approach of stability analysis is applicable
to a wide class of stability problems in neural networks. The
retrieval state in associative memory neural networks of
spiking neurons can be investigated by the similar stability
analysis [21]. More complicated neural networks, including
pyramidal neurons and interneurons [23], would also be ana-
lyzed by the present approach.
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